Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction.
نویسندگان
چکیده
Neurotransmitter release is triggered by the cooperative action of approximately five Ca2+ ions entering the presynaptic terminal through Ca2+ channels. Depending on the organization of the active zone (AZ), influx through one or many channels may be needed to cause fusion of a vesicle. Using a combination of experiments and modeling, we examined the number of channels that contribute Ca2+ for fusion of a single vesicle in a frog neuromuscular AZ. We compared Ca2+ influx to neurotransmitter release by measuring presynaptic action potential-evoked (AP-evoked) Ca2+ transients simultaneously with postsynaptic potentials. Ca2+ influx was manipulated by changing extracellular [Ca2+] (Ca(ext)) to alter the flux per channel or by reducing the number of open Ca2+ channels with omega-conotoxin GVIA (omega-CTX). When Ca(ext) was reduced, the exponent of the power relationship relating release to Ca2+ influx was 4.16 +/- 0.62 (SD; n = 4), consistent with a biochemical cooperativity of approximately 5. In contrast, reducing influx with omega-CTX yielded a power relationship of 1.7 +/- 0.44 (n = 5) for Ca(ext) of 1.8 mM and 2.12 +/- 0.44 for Ca(ext) of 0.45 mM (n = 5). Using geometrically realistic Monte Carlo simulations, we tracked Ca2+ ions as they entered through each channel and diffused in the terminal. Experimental and modeling data were consistent with two to six channel openings per AZ per AP; the Ca2+ that causes fusion of a single vesicle originates from one or two channels. Channel cooperativity depends mainly on the physical relationship between channels and vesicles and is insensitive to changes in the non-geometrical parameters of our model.
منابع مشابه
Transmitter release is evoked with low probability predominately by calcium flux through single channel openings at the frog neuromuscular junction.
The quantitative relationship between presynaptic calcium influx and transmitter release critically depends on the spatial coupling of presynaptic calcium channels to synaptic vesicles. When there is a close association between calcium channels and synaptic vesicles, the flux through a single open calcium channel may be sufficient to trigger transmitter release. With increasing spatial distance...
متن کاملTransmitter release is evoked with low probability predominately by calcium flux 2 through single channel openings at the frog neuromuscular junction
39 The quantitative relationship between presynaptic calcium influx and transmitter 40 release critically depends on the spatial coupling of presynaptic calcium channels to 41 synaptic vesicles. When there is a close association between calcium channels and 42 synaptic vesicles, the flux through a single open calcium channel may be sufficient to 43 trigger transmitter release. With increasing s...
متن کاملSingle calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling
At fast-transmitting presynaptic terminals Ca(2+) enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca(2+) that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular jun...
متن کاملExternal Ca2+ dependency of synaptic transmission in drosophila synaptotagmin I mutants.
To resolve some of differences in reports on the function of Synaptotagmin I (Syt I), we re-examined synaptic transmission at the neuromuscular junction of Drosophila embryos that have mutations in the Syt I gene (syt I). Two major questions addressed were which Ca2+ binding domain, C2A or C2B, sense Ca2+ and is Syt I a negative regulator of spontaneous vesicle fusion. Synaptic currents were in...
متن کاملSynaptophysin (p38) at the frog neuromuscular junction: its incorporation into the axolemma and recycling after intense quantal secretion
Recycling of synaptophysin (p38), a synaptic vesicle integral membrane protein, was studied by the use of antisera raised against the protein purified from frog brain. When frog cutaneous pectoris muscles were fixed at rest, a bright, specific immunofluorescent signal was observed in nerve-terminal regions only if their plasma membranes had been previously permeabilized. When muscles were fixed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 51 شماره
صفحات -
تاریخ انتشار 2006